Necrosis (from the Greek νεκρός, "dead") is the premature death of cells and living tissue. Necrosis is caused by external factors, such as infection, toxins, or trauma. This is in contrast to apoptosis, which is a naturally occurring cause of cellular death. While apoptosis often provides beneficial effects to the organism, necrosis is almost always detrimental, and can be fatal.
Cells which die due to necrosis do not usually send the same chemical signals to the immune system that cells undergoing apoptosis do. This prevents nearby phagocytes from locating and engulfing the dead cells, leading to a build up of dead tissue and cell debris at or near the site of the cell death. For this reason, it is often necessary to remove necrotic tissue surgically.
Cellular necrosis can be induced by a number of external sources, including injury, infection, cancer, infarction, poisons, and inflammation. For example, an infarction (blockage of blood flow to muscular tissue) causes necrosis of muscle tissue due to lack of oxygen to the affected cell, such as occurs in a myocardial infarction -- a heart attack. Certain spider (brown recluse) and snake (rattlesnake, Bothrops) venoms can cause necrosis of the tissue near the bite wound, as can a Group A streptococcus infection (one of the "flesh-eating" bacteria).
Necrotic tissue does not undergo the same chemical reactions that "normally" dying apoptotic tissue does. The sudden failure of one part of the cell triggers a so-called "cascade of events". In addition to the lack of chemical signals to the immune system, cells undergoing necrosis can release harmful chemicals into the surrounding tissue. In particular, cells contain small organelles called lysosomes, which are capable of digesting cellular material. Damage to the lysosome membrane can trigger release of the contained enzymes, destroying other parts of the cell. Worse, when these enzymes are released from the non-dead cell, they can trigger a chain reaction of further cell death. If a sufficient amount of contiguous tissue necrotizes, it is termed gangrene. Proper care and treatment of wounds or animal bites plays a key role in preventing this type of widespread necrosis. During a surgical biopsy, this necrosis chain-reaction is halted by fixation or freezing.
Necrosis typically begins with cell swelling, chromatin digestion, disruption of the plasma membrane and organelle membranes. Late necrosis is characterized by extensive DNA hydrolysis, vacuolation of the endoplasmic reticulum, organelle breakdown, and cell lysis. The release of intracellular content after plasma membrane rupture is the cause of inflammation in necrosis.
There are seven distinctive morphologic patterns of necrosis:
- Coagulative necrosis is typically seen in hypoxic (low oxygen) environments, such as an infarction. Cell outlines remain after cell death and can be observed by light microscopy.
- Liquefactive necrosis is usually associated with cellular destruction and pus formation (e.g. pneumonia). This is typical of bacterial or, sometimes, fungal infections because of their ability to stimulate an inflammatory reaction. Curiously, ischemia (restriction of blood supply) in the brain produces liquefactive, rather than coagulative, necrosis, due to the lack of any substantial supportive stroma.
- Gummatous necrosis is restricted to necrosis involving spirochaetal infections (e.g. syphilis).
- Haemorrhagic necrosis is due to blockage of the venous drainage of an organ or tissue (e.g. in testicular torsion).
- Caseous necrosis is a specific form of coagulation necrosis typically caused by mycobacteria (e.g. tuberculosis), fungi, and some foreign substances. It can be considered a combination of coagulative and liquefactive necrosis.
- Fatty necrosis results from the action of lipases on fatty tissues (e.g. acute pancreatitis, breast tissue necrosis).
- Fibrinoid necrosis is caused by immune-mediated vascular damage. It is marked by deposition of fibrin-like proteinaceous material in arterial walls, which appears smudgy and eosinophilic on light microscopy.
Treatment of necrosis typically involves two distinct processes. Usually, the underlying cause of the necrosis must be treated before the dead tissue itself can be dealt with. For example, a snake or spider bite victim will receive anti-venom to halt the spread of the toxins, while an infected patient will receive antibiotics.
Even after the initial cause of the necrosis has been halted, the necrotic tissue will remain in the body. The body's immune response to apoptosis, the automatic breaking down and recycling of the cell material, is not triggered by necrotic cell death.
The standard therapy of necrosis (wounds, bedsores, burns etc.) is surgical removal of necrotic tissue. Depending on the severity of the necrosis, this may range from removal of small patches of skin, to complete amputation of affected limbs or organs. Chemical removal, via an enzymatic debriding agent, is another option. In selected cases, special maggot therapy has been utilized with good results.
source from: http://en.wikipedia.org/wiki/Necrosis
Pl. necroses [Gr.] the morphological changes indicative of cell death caused by enzymatic degradation.
- aseptic n. — necrosis without infection or inflammation.
- caseous n. — necrosis in which the tissue is soft, dry and cheesy, occurring typically in tuberculosis.
- central n. — necrosis affecting the central portion of an affected bone, cell or lobule of the liver.
- cheesy n. — that in which the tissue resembles cottage cheese; most often seen in tuberculosis.
- coagulation n. — death of cells, the protoplasm of the cells becoming fixed and opaque by coagulation of the protein elements, the cellular outline persisting for a long time.
- colliquative n. — see liquefactive necrosis (below).
- liquefactive n. — necrosis in which the necrotic material becomes softened and liquefied.
- moist n. — necrosis in which the dead tissue is wet and soft.
- Zenker's n. — hyaline degeneration and necrosis of striated muscle; called also Zenker's degeneration.